Sticking with the MNIST dataset, let's improve our autoencoder's performance using convolutional layers. Again, loading modules and the data.
%matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', validation_size=0)
img = mnist.train.images[2]
plt.imshow(img.reshape((28, 28)), cmap='Greys_r')
The encoder part of the network will be a typical convolutional pyramid. Each convolutional layer will be followed by a max-pooling layer to reduce the dimensions of the layers. The decoder though might be something new to you. The decoder needs to convert from a narrow representation to a wide reconstructed image. For example, the representation could be a 4x4x8 max-pool layer. This is the output of the encoder, but also the input to the decoder. We want to get a 28x28x1 image out from the decoder so we need to work our way back up from the narrow decoder input layer. A schematic of the network is shown below.
Here our final encoder layer has size 4x4x8 = 128. The original images have size 28x28 = 784, so the encoded vector is roughly 16% the size of the original image. These are just suggested sizes for each of the layers. Feel free to change the depths and sizes, but remember our goal here is to find a small representation of the input data.
Okay, so the decoder has these "Upsample" layers that you might not have seen before. First off, I'll discuss a bit what these layers aren't. Usually, you'll see transposed convolution layers used to increase the width and height of the layers. They work almost exactly the same as convolutional layers, but in reverse. A stride in the input layer results in a larger stride in the transposed convolution layer. For example, if you have a 3x3 kernel, a 3x3 patch in the input layer will be reduced to one unit in a convolutional layer. Comparatively, one unit in the input layer will be expanded to a 3x3 path in a transposed convolution layer. The TensorFlow API provides us with an easy way to create the layers, tf.nn.conv2d_transpose
.
However, transposed convolution layers can lead to artifacts in the final images, such as checkerboard patterns. This is due to overlap in the kernels which can be avoided by setting the stride and kernel size equal. In this Distill article from Augustus Odena, et al, the authors show that these checkerboard artifacts can be avoided by resizing the layers using nearest neighbor or bilinear interpolation (upsampling) followed by a convolutional layer. In TensorFlow, this is easily done with tf.image.resize_images
, followed by a convolution. Be sure to read the Distill article to get a better understanding of deconvolutional layers and why we're using upsampling.
Exercise: Build the network shown above. Remember that a convolutional layer with strides of 1 and 'same' padding won't reduce the height and width. That is, if the input is 28x28 and the convolution layer has stride = 1 and 'same' padding, the convolutional layer will also be 28x28. The max-pool layers are used the reduce the width and height. A stride of 2 will reduce the size by a factor of 2. Odena et al claim that nearest neighbor interpolation works best for the upsampling, so make sure to include that as a parameter in
tf.image.resize_images
or usetf.image.resize_nearest_neighbor
. For convolutional layers, usetf.layers.conv2d
. For example, you would writeconv1 = tf.layers.conv2d(inputs, 32, (5,5), padding='same', activation=tf.nn.relu)
for a layer with a depth of 32, a 5x5 kernel, stride of (1,1), padding is 'same', and a ReLU activation. Similarly, for the max-pool layers, usetf.layers.max_pooling2d
.
mnist.train.images.shape[1]
image_size = mnist.train.images.reshape((mnist.train.images.shape[0], 28, 28)).shape[1:]
print('image size: ', image_size)
learning_rate = 0.001
image_size = mnist.train.images.shape[1]
print('image size: ', image_size)
# Input and target placeholders
inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs')
print("This is our placeholder for the inputs: ", inputs_)
targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets')
print("This is our placeholder for the targets: ", targets_)
### Encoder
# Convolutional Layer in Tensorflow example:
# conv1 = tf.layers.conv2d(
# inputs=input_layer,
# filters=32,
# kernel_size=[5, 5],
# padding="same",
# activation=tf.nn.relu)
conv1 = tf.layers.conv2d(inputs=inputs_, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
print("Convolution Layer conv1", conv1)
print('Now 28x28x16')
# Max Pooling layer
# max_pooling2d(
# inputs,
# pool_size,
# strides,
# padding='valid',
# data_format='channels_last',
# name=None)
maxpool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=2, strides=2, padding='same')
print("Maxpooling Layer maxpoo11", maxpool1)
print('Now 14x14x16')
conv2 = tf.layers.conv2d(inputs=maxpool1, filters=8, kernel_size=3, padding='same', activation=tf.nn.relu)
print("Convolutinal Layer conv2", conv2)
print('Now 14x14x8')
maxpool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=2, strides=2, padding='same')
print("Maxpooling Layer maxpoo12", maxpool2)
print('Now 7x7x8')
conv3 = tf.layers.conv2d(inputs=maxpool2, filters=8, kernel_size=3, padding='same', activation=tf.nn.relu)
print("Convolutinal Layer conv3", conv3)
print('Now 7x7x8')
encoded = tf.layers.max_pooling2d(inputs=conv3, pool_size=2, strides=2, padding='same')
print("Encoded", encoded)
print('Now 4x4x8')
### Decoder
#resize_images(
# images,
# size,
# method=ResizeMethod.BILINEAR,
# align_corners=False
#)
upsample1 = tf.image.resize_images(images=encoded, size=(7,7))
print("Resize Layer upsample1", upsample1)
print('Now 7x7x8')
conv4 = tf.layers.conv2d(inputs=upsample1, filters=8, kernel_size=3, padding='same', activation=tf.nn.relu)
print("Convolutinal Layer conv4", conv4)
print('Now 7x7x8')
upsample2 = tf.image.resize_images(images=conv4, size=(14, 14))
print("Resize Layer upsample2", upsample2)
print('Now 14x14x8')
conv5 = tf.layers.conv2d(inputs=upsample2, filters=8, kernel_size=3, padding='same', activation=tf.nn.relu)
print("Convolutinal Layer conv5", conv5)
print('Now 14x14x8')
upsample3 = tf.image.resize_images(images=conv5, size=(28, 28))
print("Resize Layer upsample3", upsample3)
print('Now 28x28x8')
conv6 = tf.layers.conv2d(inputs=upsample3, filters=16, kernel_size=3, padding='same', activation=tf.nn.relu)
print("Convolutinal Layer conv6", conv6)
print('Now 28x28x16')
logits = tf.layers.conv2d(inputs=conv6, filters=1, kernel_size=3, padding='same')
print("Logits", logits)
print('Now 28x28x1')
# Pass logits through sigmoid to get reconstructed image
decoded = tf.nn.sigmoid(logits)
print("Decoded", decoded)
# Pass logits through sigmoid and calculate the cross-entropy loss
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets_)
print("Loss", loss)
# Get cost and define the optimizer
cost = tf.reduce_mean(loss)
print("Cost", cost)
opt = tf.train.AdamOptimizer(learning_rate).minimize(cost)
print("Opt", opt)
As before, here we'll train the network. Instead of flattening the images though, we can pass them in as 28x28x1 arrays.
sess = tf.Session()
epochs = 20
batch_size = 200
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for ii in range(mnist.train.num_examples//batch_size):
batch = mnist.train.next_batch(batch_size)
imgs = batch[0].reshape((-1, 28, 28, 1))
batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: imgs,
targets_: imgs})
print("Epoch: {}/{}...".format(e+1, epochs),
"Training loss: {:.4f}".format(batch_cost))
fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))
in_imgs = mnist.test.images[:10]
reconstructed = sess.run(decoded, feed_dict={inputs_: in_imgs.reshape((10, 28, 28, 1))})
for images, row in zip([in_imgs, reconstructed], axes):
for img, ax in zip(images, row):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig.tight_layout(pad=0.1)
sess.close()
As I've mentioned before, autoencoders like the ones you've built so far aren't too useful in practive. However, they can be used to denoise images quite successfully just by training the network on noisy images. We can create the noisy images ourselves by adding Gaussian noise to the training images, then clipping the values to be between 0 and 1. We'll use noisy images as input and the original, clean images as targets. Here's an example of the noisy images I generated and the denoised images.
Since this is a harder problem for the network, we'll want to use deeper convolutional layers here, more feature maps. I suggest something like 32-32-16 for the depths of the convolutional layers in the encoder, and the same depths going backward through the decoder. Otherwise the architecture is the same as before.
Exercise: Build the network for the denoising autoencoder. It's the same as before, but with deeper layers. I suggest 32-32-16 for the depths, but you can play with these numbers, or add more layers.
learning_rate = 0.001
inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs')
targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets')
### Encoder
conv1 = tf.layers.conv2d(inputs=inputs_, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 28x28x32
maxpool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=2, strides=2, padding='same')
# Now 14x14x32
conv2 = tf.layers.conv2d(inputs=maxpool1, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 14x14x32
maxpool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=2, strides=2, padding='same')
# Now 7x7x32
conv3 = tf.layers.conv2d(inputs=maxpool2, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 7x7x16
encoded = tf.layers.max_pooling2d(inputs=conv3, pool_size=2, strides=2, padding='same')
# Now 4x4x16
### Decoder
upsample1 = tf.image.resize_images(images=encoded, size=(7,7))
# Now 7x7x16
conv4 = tf.layers.conv2d(inputs=upsample1, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 7x7x16
upsample2 = tf.image.resize_images(images=conv4, size=(14,14))
# Now 14x14x16
conv5 = tf.layers.conv2d(inputs=upsample2, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 14x14x32
upsample3 = tf.image.resize_images(images=conv5, size=(28,28))
# Now 28x28x32
conv6 = tf.layers.conv2d(inputs=upsample3, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# Now 28x28x32
logits = tf.layers.conv2d(inputs=conv6, filters=1, kernel_size=3, padding='same')
#Now 28x28x1
# Pass logits through sigmoid to get reconstructed image
decoded = tf.nn.sigmoid(logits)
# Pass logits through sigmoid and calculate the cross-entropy loss
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets_)
# Get cost and define the optimizer
cost = tf.reduce_mean(loss)
opt = tf.train.AdamOptimizer(learning_rate).minimize(cost)
sess = tf.Session()
epochs = 100
batch_size = 200
# Set's how much noise we're adding to the MNIST images
noise_factor = 0.5
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for ii in range(mnist.train.num_examples//batch_size):
batch = mnist.train.next_batch(batch_size)
# Get images from the batch
imgs = batch[0].reshape((-1, 28, 28, 1))
# Add random noise to the input images
noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape)
# Clip the images to be between 0 and 1
noisy_imgs = np.clip(noisy_imgs, 0., 1.)
# Noisy images as inputs, original images as targets
batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: noisy_imgs,
targets_: imgs})
print("Epoch: {}/{}...".format(e+1, epochs),
"Training loss: {:.4f}".format(batch_cost))
Here I'm adding noise to the test images and passing them through the autoencoder. It does a suprisingly great job of removing the noise, even though it's sometimes difficult to tell what the original number is.
fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))
in_imgs = mnist.test.images[:10]
noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape)
noisy_imgs = np.clip(noisy_imgs, 0., 1.)
reconstructed = sess.run(decoded, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))})
for images, row in zip([noisy_imgs, reconstructed], axes):
for img, ax in zip(images, row):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig.tight_layout(pad=0.1)