In this project, you'll use generative adversarial networks to generate new images of faces.
You'll be using two datasets in this project:
Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.
If you're using FloydHub, set data_dir
to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".
data_dir = './data'
# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'
import helper
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)
show_n_images = 25
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')
The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images
.
show_n_images = 25
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))
Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.
The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).
You'll build the components necessary to build a GANs by implementing the following functions below:
model_inputs
discriminator
generator
model_loss
model_opt
train
This will check to make sure you have the correct version of TensorFlow and access to a GPU
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
Implement the model_inputs
function to create TF Placeholders for the Neural Network. It should create the following placeholders:
image_width
, image_height
, and image_channels
.z_dim
.Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)
import problem_unittests as tests
def model_inputs(image_width, image_height, image_channels, z_dim):
"""
Create the model inputs
:param image_width: The input image width
:param image_height: The input image height
:param image_channels: The number of image channels
:param z_dim: The dimension of Z
:return: Tuple of (tensor of real input images, tensor of z data, learning rate)
"""
# TODO: Implement Function
real_inputs = tf.placeholder(tf.float32, shape=[None, image_width, image_height, image_channels], name='real_inputs')
z_inputs = tf.placeholder(tf.float32, shape=[None, z_dim], name='fake_inputs')
learning_rate = tf.placeholder(tf.float32)
return real_inputs, z_inputs, learning_rate
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)
Implement discriminator
to create a discriminator neural network that discriminates on images
. This function should be able to reuse the variables in the neural network. Use tf.variable_scope
with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).
def discriminator(images, reuse=False, alpha=0.2):
"""
Create the discriminator network
:param images: Tensor of input image(s)
:param reuse: Boolean if the weights should be reused
:return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
"""
# TODO: Implement Function
with tf.variable_scope("discriminator", reuse=reuse):
# input layer is 28 x 28 x 3
h1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
relu1 = tf.maximum(alpha * h1, h1)
# 14 x 14 x 64
h2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
bn2 = tf.layers.batch_normalization(h2, training=True)
relu2 = tf.maximum(alpha * bn2, bn2)
# 7 x 7 x 128
# logits
flat = tf.reshape(relu2, (-1, 7*7*128))
logits = tf.layers.dense(flat, 1)
# output
out = tf.nn.sigmoid(logits)
return out, logits
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)
Implement generator
to generate an image using z
. This function should be able to reuse the variables in the neural network. Use tf.variable_scope
with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim
images.
def generator(z, out_channel_dim, is_train=True, alpha=0.2):
"""
Create the generator network
:param z: Input z
:param out_channel_dim: The number of channels in the output image
:param is_train: Boolean if generator is being used for training
:return: The tensor output of the generator
"""
# TODO: Implement Function
with tf.variable_scope("generator", reuse=(not is_train)):
# First fully connected layer
h0 = tf.layers.dense(z, 3*3*256)
# # First fully connected layer
h0 = tf.reshape(h0, (-1, 3, 3, 256))
h0 = tf.layers.batch_normalization(h0, training=is_train)
h0 = tf.maximum(alpha * h0, h0)
# 4 x 4 x 256 now
# first convolutional layer
h1 = tf.layers.conv2d_transpose(h0, filters=128, kernel_size=3, strides=2, padding='valid')
h1 = tf.layers.batch_normalization(h1, training=is_train)
h1 = tf.maximum(alpha * h1, h1)
# 7 x 7 x 128 now
# second convolutional layer
h2 = tf.layers.conv2d_transpose(h1, filters=64, kernel_size=5, strides=2, padding='same')
h2 = tf.layers.batch_normalization(h2, training=is_train)
h2 = tf.maximum(alpha * h2, h2)
# 14 x 14 x 64 now
h3 = tf.layers.conv2d_transpose(h2, filters=32, kernel_size=5, strides=2, padding='same')
h3 = tf.layers.batch_normalization(h3, training=is_train)
h3 = tf.maximum(alpha * h3, h3)
# 28 x 28 x 32 now
# Output layer
logits = tf.layers.conv2d_transpose(h3, filters=out_channel_dim, kernel_size=5, strides=1, padding='same')
# 28 x 28 x 3 now
out = tf.tanh(logits)
return out
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)
Implement model_loss
to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:
discriminator(images, reuse=False)
generator(z, out_channel_dim, is_train=True)
def model_loss(input_real, input_z, out_channel_dim):
"""
Get the loss for the discriminator and generator
:param input_real: Images from the real dataset
:param input_z: Z input
:param out_channel_dim: The number of channels in the output image
:return: A tuple of (discriminator loss, generator loss)
"""
# TODO: Implement Function
# label smoothing
smooth = 0.1
g_model = generator(input_z, out_channel_dim)
d_model_real, d_logits_real = discriminator(input_real)
d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_model_real) * (1 - smooth)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_model_fake)))
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_model_fake)))
d_loss = d_loss_real + d_loss_fake
return d_loss, g_loss
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)
Implement model_opt
to create the optimization operations for the GANs. Use tf.trainable_variables
to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).
def model_opt(d_loss, g_loss, learning_rate, beta1):
"""
Get optimization operations
:param d_loss: Discriminator loss Tensor
:param g_loss: Generator loss Tensor
:param learning_rate: Learning Rate Placeholder
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:return: A tuple of (discriminator training operation, generator training operation)
"""
# TODO: Implement Function
# Get weights and bias to update
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
g_vars = [var for var in t_vars if var.name.startswith('generator')]
# updating batch normalization
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
return d_train_opt, g_train_opt
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np
def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
"""
Show example output for the generator
:param sess: TensorFlow session
:param n_images: Number of Images to display
:param input_z: Input Z Tensor
:param out_channel_dim: The number of channels in the output image
:param image_mode: The mode to use for images ("RGB" or "L")
"""
cmap = None if image_mode == 'RGB' else 'gray'
z_dim = input_z.get_shape().as_list()[-1]
example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])
samples = sess.run(
generator(input_z, out_channel_dim, False),
feed_dict={input_z: example_z})
images_grid = helper.images_square_grid(samples, image_mode)
pyplot.imshow(images_grid, cmap=cmap)
pyplot.show()
Implement train
to build and train the GANs. Use the following functions you implemented:
model_inputs(image_width, image_height, image_channels, z_dim)
model_loss(input_real, input_z, out_channel_dim)
model_opt(d_loss, g_loss, learning_rate, beta1)
Use the show_generator_output
to show generator
output while you train. Running show_generator_output
for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator
output every 100 batches.
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
"""
Train the GAN
:param epoch_count: Number of epochs
:param batch_size: Batch Size
:param z_dim: Z dimension
:param learning_rate: Learning Rate
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:param get_batches: Function to get batches
:param data_shape: Shape of the data
:param data_image_mode: The image mode to use for images ("RGB" or "L")
"""
# TODO: Build Model
input_real, input_z, learn_rate = model_inputs(image_width=data_shape[1],
image_height=data_shape[2],
image_channels=data_shape[3],
z_dim=z_dim)
d_loss, g_loss = model_loss(input_real,
input_z,
data_shape[3])
d_opt, g_opt = model_opt(d_loss,
g_loss,
learn_rate,
beta1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
steps = 0
for epoch_i in range(epoch_count):
for batch_images in get_batches(batch_size):
# TODO: Train Model
steps += 1
#rescale batch image samples to get them in range -1, 1
batch_images = batch_images * 2
# Sample random noise for G
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
# Run optimizers
_ = sess.run(d_opt, feed_dict={input_real: batch_images,
input_z: batch_z,
learn_rate: learning_rate})
_ = sess.run(g_opt, feed_dict={input_z: batch_z,
input_real: batch_images,
learn_rate: learning_rate})
if steps % 10 == 0:
# At the end of each epoch, get the losses and print them out
train_loss_d = d_loss.eval({input_z: batch_z,
input_real: batch_images})
train_loss_g = g_loss.eval({input_z: batch_z})
print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
"Batch {}...".format(steps),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
if steps % 100 == 0:
show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)
# at the end of every epoch show generator output
show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)
Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.
batch_size = 64
z_dim = 50
learning_rate = 0.001
beta1 = 0.4
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2
mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
mnist_dataset.shape, mnist_dataset.image_mode)
Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.
batch_size = 128
z_dim = 100
learning_rate = 0.0003
beta1 = 0.3
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1
celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
celeba_dataset.shape, celeba_dataset.image_mode)
When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.